Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1335946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333034

RESUMO

The lethal zoonosis alveolar echinococcosis is caused by tumour-like growth of the metacestode stage of the tapeworm Echinococcus multilocularis within host organs. We previously demonstrated that metacestode proliferation is exclusively driven by somatic stem cells (germinative cells), which are the only mitotically active parasite cells that give rise to all differentiated cell types. The Echinococcus gene repertoire required for germinative cell maintenance and differentiation has not been characterised so far. We herein carried out Illumina sequencing on cDNA from Echinococcus metacestode vesicles, from metacestode tissue depleted of germinative cells, and from Echinococcus primary cell cultures. We identified a set of ~1,180 genes associated with germinative cells, which contained numerous known stem cell markers alongside genes involved in replication, cell cycle regulation, mitosis, meiosis, epigenetic modification, and nucleotide metabolism. Interestingly, we also identified 44 stem cell associated transcription factors that are likely involved in regulating germinative cell differentiation and/or pluripotency. By in situ hybridization and pulse-chase experiments, we also found a new general Echinococcus stem cell marker, EmCIP2Ah, and we provide evidence implying the presence of a slow cycling stem cell sub-population expressing the extracellular matrix factor Emkal1. RNA-Seq analyses on primary cell cultures revealed that metacestode-derived Echinococcus stem cells display an expanded differentiation capability and do not only form differentiated cell types of the metacestode, but also cells expressing genes specific for protoscoleces, adult worms, and oncospheres, including an ortholog of the schistosome praziquantel target, EmTRPMPZQ. Finally, we show that primary cell cultures contain a cell population expressing an ortholog of the tumour necrosis factor α receptor family and that mammalian TNFα accelerates the development of metacestode vesicles from germinative cells. Taken together, our analyses provide a robust and comprehensive characterization of the Echinococcus germinative cell transcriptome, demonstrate expanded differentiation capability of metacestode derived stem cells, and underscore the potential of primary germinative cell cultures to investigate developmental processes of the parasite. These data are relevant for studies into the role of Echinococcus stem cells in parasite development and will facilitate the design of anti-parasitic drugs that specifically act on the parasite germinative cell compartment.


Assuntos
Echinococcus multilocularis , Parasitos , Animais , Echinococcus multilocularis/genética , Echinococcus multilocularis/metabolismo , Parasitos/genética , Larva , Perfilação da Expressão Gênica , Técnicas de Cultura de Células , Células-Tronco , Mamíferos/genética
2.
Front Cell Infect Microbiol ; 13: 1153117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033489

RESUMO

The lethal zoonosis alveolar echinococcosis (AE) is caused by tumor-like, infiltrative growth of the metacestode larval stage of the tapeworm Echinococcus multilocularis. We previously showed that the metacestode is composed of posteriorized tissue and that the production of the subsequent larval stage, the protoscolex, depends on re-establishment of anterior identities within the metacestode germinative layer. It is, however, unclear so far how protoscolex differentiation in Echinococcus is regulated. We herein characterized the full complement of E. multilocularis TGFß/BMP receptors, which is composed of one type II and three type I receptor serine/threonine kinases. Functional analyzes showed that all Echinococcus TGFß/BMP receptors are enzymatically active and respond to host derived TGFß/BMP ligands for activating downstream Smad transcription factors. In situ hybridization experiments demonstrated that the Echinococcus TGFß/BMP receptors are mainly expressed by nerve and muscle cells within the germinative layer and in developing brood capsules. Interestingly, the production of brood capsules, which later give rise to protoscoleces, was strongly suppressed in the presence of inhibitors directed against TGFß/BMP receptors, whereas protoscolex differentiation was accelerated in response to host BMP2 and TGFß. Apart from being responsive to host TGFß/BMP ligands, protoscolex production also correlated with the expression of a parasite-derived TGFß-like ligand, EmACT, which is expressed in early brood capsules and which is strongly expressed in anterior domains during protoscolex development. Taken together, these data indicate an important role of TGFß/BMP signalling in Echinococcus anterior pole formation and protoscolex development. Since TGFß is accumulating around metacestode lesions at later stages of the infection, the host immune response could thus serve as a signal by which the parasite senses the time point at which protoscoleces must be produced. Overall, our data shed new light on molecular mechanisms of host-parasite interaction during AE and are relevant for the development of novel treatment strategies.


Assuntos
Echinococcus multilocularis , Parasitos , Animais , Echinococcus multilocularis/metabolismo , Cápsulas/metabolismo , Ligantes , Larva , Fator de Crescimento Transformador beta/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Fatores de Crescimento Transformadores/metabolismo
3.
Pathogens ; 11(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35631039

RESUMO

Both alveolar (AE) and cystic echinococcosis (CE) are lacking pathognomonic clinical signs; consequently imaging technologies and serology remain the main pillars for diagnosis. The present study included 100 confirmed treatment-naïve AE and 64 CE patients that were diagnosed in Switzerland or Kyrgyzstan. Overall, 10 native Echinococcus spp. antigens, 3 recombinant antigens, and 4 commercial assays were comparatively evaluated. All native E. multilocularis antigens were produced in duplicates with a European and a Kyrgyz isolate and showed identical test values for the diagnosis of AE and CE. Native antigens and three commercial tests showed high diagnostic sensitivities (Se: 86-96%) and specificities (Sp: 96-99%) for the diagnosis of AE and CE in Swiss patients. In Kyrgyz patients, values of sensitivities and specificities were 10-20% lower as compared to the Swiss patients' findings. For the sero-diagnosis of AE in Kyrgyzstan, a test-combination of an E. multilocularis protoscolex antigen and the recombinant antigen Em95 appears to be the most suitable test strategy (Se: 98%, Sp: 87%). For the diagnosis of CE in both countries, test performances were hampered by major cross-reactions with AE patients and other parasitic diseases as well as by limited diagnostic sensitivities (93% in Switzerland and 76% in Kyrgyzstan, respectively).

4.
Parasitol Res ; 121(4): 1155-1168, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35079857

RESUMO

Echinococcus multilocularis is the etiological agent of alveolar echinococcosis (AE), a serious parasitic disease in the Northern Hemisphere. The E. multilocularis primary cell cultivation system, together with E. multilocularis genome data and a range of pioneering molecular-based tools have advanced the research on this and other cestodes. RNA interference (RNAi) and microRNA knock-down have recently contributed to the study of the cellular and molecular basis of tapeworm development and host-parasite interaction. These, as well as other techniques, normally involve an electroporation step for the delivery of RNA, DNA, peptides, and small molecules into cells. Using transcriptome data and bioinformatic analyses, we herein report a genome-wide comparison between primary cells of E. multilocularis and primary cells under electroporated conditions after 48 h of culture. We observed that ~ 15% of genes showed a significant variation in expression level, including highly upregulated genes in electroporated cells, putatively involved in detoxification and membrane remodeling. Furthermore, we found genes related to carbohydrate metabolism, proteolysis, calcium ion binding and microtubule processing significantly altered, which could explain the cellular dispersion and the reduced formation of cellular aggregates observed during the first 48 h after electroporation.


Assuntos
Cestoides , Infecções por Cestoides , Equinococose , Echinococcus multilocularis , Animais , Equinococose/parasitologia , Echinococcus multilocularis/genética , Eletroporação , Cultura Primária de Células
5.
PLoS Negl Trop Dis ; 15(12): e0010027, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34879059

RESUMO

BACKGROUND: The metacestode larval stage of the fox-tapeworm Echinococcus multilocularis causes alveolar echinococcosis by tumour-like growth within the liver of the intermediate host. Metacestode growth and development is stimulated by host-derived cytokines such as insulin, fibroblast growth factor, and epidermal growth factor via activation of cognate receptor tyrosine kinases expressed by the parasite. Little is known, however, concerning signal transmission to the parasite nucleus and cross-reaction with other parasite signalling systems. METHODOLOGY/PRINCIPAL FINDINGS: Using bioinformatic approaches, cloning, and yeast two-hybrid analyses we identified a novel mitogen-activated kinase (MAPK) cascade module that consists of E. multilocularis orthologs of the tyrosine kinase receptor interactor Growth factor receptor-bound 2, EmGrb2, the MAPK kinase kinase EmMEKK1, a novel MAPK kinase, EmMKK3, and a close homolog to c-Jun N-terminal kinase (JNK), EmMPK3. Whole mount in situ hybridization analyses indicated that EmMEKK1 and EmMPK3 are both expressed in E. multilocularis germinative (stem) cells but also in differentiated or differentiating cells. Treatment with the known JNK inhibitor SP600125 led to a significantly reduced formation of metacestode vesicles from stem cells and to a specific reduction of proliferating stem cells in mature metacestode vesicles. CONCLUSIONS/SIGNIFICANCE: We provide evidence for the expression of a MEKK1-JNK MAPK cascade module which, in mammals, is crucially involved in stress responses, cytoskeletal rearrangements, and apoptosis, in E. multilocularis stem cells. Inhibitor studies indicate an important role of JNK signalling in E. multilocularis stem cell survival and/or maintenance. Our data are relevant for molecular and cellular studies into crosstalk signalling mechanisms that govern Echinococcus stem cell function and introduce the JNK signalling cascade as a possible target of chemotherapeutics against echinococcosis.


Assuntos
Echinococcus multilocularis/enzimologia , Proteínas de Helminto/metabolismo , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase Quinase 1/metabolismo , Células-Tronco/enzimologia , Animais , Proliferação de Células , Echinococcus multilocularis/genética , Echinococcus multilocularis/crescimento & desenvolvimento , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Proteínas de Helminto/genética , MAP Quinase Quinase 4/genética , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 3/genética , MAP Quinase Quinase Quinase 3/metabolismo , Sistema de Sinalização das MAP Quinases , Células-Tronco/citologia
6.
PLoS Negl Trop Dis ; 14(5): e0007640, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32442168

RESUMO

We present a comprehensive analysis of the hepatic miRNA transcriptome at one month post-infection of experimental primary alveolar echinococcosis (AE), a parasitic infection caused upon ingestion of E. multilocularis eggs. Liver tissues were collected from infected and non-infected C57BL/6 mice, then small RNA libraries were prepared for next-generation sequencing (NGS). We conducted a Stem-loop RT-qPCR for validation of most dysregulated miRNAs. In infected mice, the expression levels of 28 miRNAs were significantly altered. Of these, 9 were up-regulated (fold change (FC) ≥ 1.5) and 19 were down-regulated (FC ≤ 0.66) as compared to the non-infected controls. In infected livers, mmu-miR-148a-3p and mmu-miR-101b-3p were 8- and 6-fold down-regulated, respectively, and the expression of mmu-miR-22-3p was reduced by 50%, compared to non-infected liver tissue. Conversely, significantly higher hepatic levels were noted for Mus musculus (mmu)-miR-21a-5p (FC = 2.3) and mmu-miR-122-5p (FC = 1.8). In addition, the relative mRNA expression levels of five genes (vegfa, mtor, hif1-α, fasn and acsl1) that were identified as targets of down-regulated miRNAs were significantly enhanced. All the five genes exhibited a higher expression level in livers of E. multilocularis infected mice compared to non-infected mice. Finally, we studied the issue related to functionally mature arm selection preference (5p and/or 3p) from the miRNA precursor and showed that 9 pre-miRNAs exhibited different arm selection preferences in normal versus infected liver tissues. In conclusion, this study provides first evidence that miRNAs are regulated early in primary murine AE. Our findings raise intriguing questions such as (i) how E. multilocularis affects hepatic miRNA expression;(ii) what are the alterations in miRNA expression patterns in more advanced AE-stages; and (iii) which hepatic cellular, metabolic and/or immunologic processes are modulated through altered miRNAs in AE. Thus, further research on the regulation of miRNAs during AE is needed, since miRNAs constitute an attractive potential option for development of novel therapeutic approaches against AE.


Assuntos
Equinococose/genética , Echinococcus multilocularis/fisiologia , Fígado/metabolismo , MicroRNAs/metabolismo , Óvulo/crescimento & desenvolvimento , Animais , Equinococose/metabolismo , Equinococose/parasitologia , Echinococcus multilocularis/crescimento & desenvolvimento , Feminino , Humanos , Fígado/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Óvulo/fisiologia
7.
PLoS Negl Trop Dis ; 13(12): e0007932, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31881019

RESUMO

Echinococcosis represents a major public health problem worldwide and is considered a neglected disease by the World Health Organization. The etiological agents are Echinococcus tapeworms, which display elaborate developmental traits that imply a complex control of gene expression. MicroRNAs (miRNAs), a class of small regulatory RNAs, are involved in the regulation of many biological processes such as development and metabolism. They act through the repression of messenger RNAs (mRNAs) usually by binding to the 3' untranslated region (3'UTR). Previously, we described the miRNome of several Echinococcus species and found that miRNAs are highly expressed in all life cycle stages, suggesting an important role in gene expression regulation. However, studying the role of miRNAs in helminth biology remains a challenge. To develop methodology for functional analysis of miRNAs in tapeworms, we performed miRNA knockdown experiments in primary cell cultures of Echinococcus multilocularis, which mimic the development of metacestode vesicles from parasite stem cells in vitro. First, we analysed the miRNA repertoire of E. multilocularis primary cells by small RNA-seq and found that miR-71, a bilaterian miRNA absent in vertebrate hosts, is one of the top five most expressed miRNAs. Using genomic information and bioinformatic algorithms for miRNA binding prediction, we found a high number of potential miR-71 targets in E. multilocularis. Inhibition of miRNAs can be achieved by transfection of antisense oligonucleotides (anti-miRs) that block miRNA function. To this end, we evaluated a variety of chemically modified anti-miRs for miR-71 knockdown. Electroporation of primary cells with 2'-O-methyl modified anti-miR-71 led to significantly reduced miR-71 levels. Transcriptomic analyses showed that several predicted miR-71 targets were up-regulated in anti-miR-treated primary cells, including genes potentially involved in parasite development, host parasite interaction, and several genes of as yet unknown function. Notably, miR-71-silenced primary cell cultures showed a strikingly different phenotype from control cells and did not develop into fully mature metacestodes. These findings indicate an important function of miR-71 in Echinococcus development and provide, for the first time, methodology to functionally study miRNAs in a tapeworm.


Assuntos
Echinococcus multilocularis/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Animais , Células Cultivadas , Biologia Computacional , Células-Tronco/fisiologia
8.
Parasitol Res ; 116(3): 1043-1054, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28110440

RESUMO

Although cystic echinococcosis (CE) is highly endemic in Bulgaria, there is still scarce information about species and/or genotypes of the Echinococcus granulosus complex that infect humans. Our study tackled the genetic diversity of E. granulosus complex in a cohort of 30 Bulgarian CE patients. Ten animal E. granulosus isolates from neighboring Greece were additionally included. Specimens were comparatively analyzed for partial sequences of five mitochondrial (mt) (cox I, nad I, rrnS, rrnL, and atp6) and three nuclear (nc) genes (act II, hbx 2, and ef-1α) using a PCR-sequencing approach. All 30 Bulgarian isolates were identified as E. granulosus sensu stricto (s.s.) and were showing identical sequences for each of the three examined partial nc gene markers. Based upon concatenated sequences from partial mtDNA markers, we detected 10 haplotypes: 6 haplotypes (H1-H6) clustering with E. granulosus s.s. (G1) and 4 haplotypes (H9-H13) grouping with E. granulosus s.s. (G3), with H1 and H10 being the most frequent in Bulgarian patients. The haplotypes H1, H4, and H11 were also present in Greek hydatid cyst samples of animal origin. In conclusion, E. granulosus s.s. (G1 and G3 genotypes) is the only causative agent found so far to cause human CE in Bulgaria. However, further studies including larger sample sizes and other additional geographic regions in Bulgaria will have to be performed to confirm our results.


Assuntos
Equinococose/parasitologia , Echinococcus granulosus/isolamento & purificação , Animais , Bulgária/epidemiologia , DNA Mitocondrial/genética , Equinococose/epidemiologia , Echinococcus granulosus/classificação , Echinococcus granulosus/genética , Variação Genética , Genótipo , Grécia , Haplótipos , Proteínas de Helminto/genética , Humanos , Fator 1 de Elongação de Peptídeos/genética
9.
Parasitol Res ; 115(11): 4405-4416, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27515372

RESUMO

Parts of the natural life cycle of Echinococcus granulosus can be retraced in vitro such as the development of protoscoleces into semiadult worms with three or more proglottids, or the redifferentiation of in vitro cultured protoscoleces into metacestode-like cystic structures. Most in vitro generated samples share-at the microscopical level-high similarities with those naturally grown, but developmental differences have also been documented, such as missing egg production in in vitro grown adults or unusual bladder/vesicle formation in protoscoleces cultured into the metacestode direction. The aim of the present study was to explore how far different in vitro generated stage-specific materials/structures match the natural situation on the transcriptome level, based on testing five exemplarily chosen different genes: the frizzled receptor eg-fz4 (posterior marker), the FGF receptor-like factor eg-fgfrl (anterior association), the cell differentiation protein eg-rcd1 (part of the CCR4-NOT complex, a key regulator of eukaryotic gene expression), the rapidly accelerated fibrosarcoma serin/threonin kinase eg-braf (part of the MAPK pathway involved, e.g., in EGF signaling) and the co-smad eg-smadD (downstream factor of TGFß/BMP2/activin signaling). These genes-tested via qPCR-were selected such as to allow a discussion on their potential role in the development of E. granulosus into the adult stage. Thus, testing took place with three ex vivo isolated samples, namely (i) egg-containing adult worms, (ii) invaginated protoscoleces, and (iii) protoscolex-free germinal layer tissue. Respective data were compared (a) with in vitro generated metacestode-like microcysts developed from protoscolices, and (b) different development stages of protoscoleces in vitro cultured toward adult maturation. As a finding, only eg-smadD and partially eg-fz4 showed high expression similarities between ex vivo harvested and in vitro cultured E. granulosus, thus suggesting a putative role in adult maturation. Conclusively, the fact of using "only" five genes did not allow answering the question if ex vivo and in vitro materials are similar on the transcriptome level. Another experimental restriction arises from different growth conditions of the in vitro cultured materials, and comparing these to the ex vivo harvested ones. Future experiments may solve the problems by using fully standardized E. granulosus sample collection and fully standardized culture conditions.


Assuntos
Echinococcus granulosus/genética , Genes de Helmintos , Animais , Doenças do Cão/parasitologia , Cães , Equinococose/parasitologia , Equinococose/veterinária , Echinococcus , Echinococcus granulosus/crescimento & desenvolvimento , Echinococcus granulosus/isolamento & purificação , Perfilação da Expressão Gênica , Estágios do Ciclo de Vida , Masculino , Ovinos , Doenças dos Ovinos/parasitologia
10.
Mol Cell Probes ; 30(4): 211-217, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27242008

RESUMO

Reliable and rapid molecular tools for the genetic identification and differentiation of Echinococcus species and/or genotypes are crucial for studying spatial and temporal transmission dynamics. Here, we describe a novel dual PCR targeting regions in the small (rrnS) and large (rrnL) subunits of mitochondrial ribosomal RNA (rRNA) genes, which enables (i) the specific identification of species and genotypes of Echinococcus (rrnS + L-PCR) and/or (ii) the identification of a range of taeniid cestodes, including different species of Echinococcus, Taenia and some others (17 species of diphyllidean helminths). This dual PCR approach was highly sensitive, with an analytical detection limit of 1 pg for genomic DNA of Echinococcus. Using concatenated sequence data derived from the two gene markers (1225 bp), we identified five unique and geographically informative single nucleotide polymorphisms (SNPs) that allowed genotypes (G1 and G3) of Echinococcus granulosus sensu stricto to be distinguished, and 25 SNPs that allowed differentiation within Echinococcus canadensis (G6/7/8/10). In conclusion, we propose that this dual PCR-based sequencing approach can be used for molecular epidemiological studies of Echinococcus and other taeniid cestodes.


Assuntos
Echinococcus/genética , Echinococcus/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA/métodos , Taenia/genética , Taenia/isolamento & purificação , Animais , Sequência de Bases , DNA Bacteriano/genética , Técnicas de Genotipagem , Humanos , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Sensibilidade e Especificidade
11.
PLoS Negl Trop Dis ; 10(3): e0004535, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26967740

RESUMO

The metacestode (larval) stage of the tapeworm Echinococcus multilocularis causes alveolar echinococcosis (AE), a very severe and in many cases incurable disease. To date, benzimidazoles such as albendazole and mebendazole are the only approved chemotherapeutical treatment options. Benzimidazoles inhibit metacestode proliferation, but do not act parasiticidal. Thus, benzimidazoles have to be taken a lifelong, can cause adverse side effects such as hepatotoxicity, and are ineffective in some patients. We here describe a newly developed screening cascade for the evaluation of the in vitro efficacy of new compounds that includes assessment of parasiticidal activity. The Malaria Box from Medicines for Malaria Venture (MMV), comprised of 400 commercially available chemicals that show in vitro activity against Plasmodium falciparum, was repurposed. Primary screening was carried out at 10 µM by employing the previously described PGI assay, and resulted in the identification of 24 compounds that caused physical damage in metacestodes. Seven out of these 24 drugs were also active at 1 µM. Dose-response assays revealed that only 2 compounds, namely MMV665807 and MMV665794, exhibited an EC50 value below 5 µM. Assessments using human foreskin fibroblasts and Reuber rat hepatoma cells showed that the salicylanilide MMV665807 was less toxic for these two mammalian cell lines than for metacestodes. The parasiticidal activity of MMV665807 was then confirmed using isolated germinal layer cell cultures as well as metacestode vesicles by employing viability assays, and its effect on metacestodes was morphologically evaluated by electron microscopy. However, both oral and intraperitoneal application of MMV665807 to mice experimentally infected with E. multilocularis metacestodes did not result in any reduction of the parasite load.


Assuntos
Anti-Helmínticos/isolamento & purificação , Anti-Helmínticos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Reposicionamento de Medicamentos/métodos , Equinococose Hepática/tratamento farmacológico , Echinococcus multilocularis/efeitos dos fármacos , Animais , Anti-Helmínticos/toxicidade , Antimaláricos/farmacologia , Antimaláricos/toxicidade , Bioensaio , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Equinococose , Echinococcus multilocularis/anatomia & histologia , Echinococcus multilocularis/fisiologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Camundongos Endogâmicos BALB C , Microscopia , Análise de Sobrevida , Resultado do Tratamento
12.
J Immunol Res ; 2016: 1450398, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28074191

RESUMO

Regulatory T (Tregs) cells play an important role in mediating tolerance to self-antigens but can also mediate detrimental tolerance to tumours and pathogens in a Foxp3-dependent manner. Genetic tools exploiting the foxp3 locus including bacterial artificial chromosome- (BAC-) transgenic DEpletion of REGulatory T cells (DEREG) mice have provided essential information on Treg biology and the potential therapeutic modulation of tolerance. In DEREG mice, Foxp3+ Tregs selectively express enhanced green fluorescent protein (eGFP) and diphtheria toxin (DT) receptor, allowing for the specific depletion of Tregs through DT administration. We here provide a detailed overview about an important consideration that long-term administration of DT induces a humoral immune response with an appropriate production of anti-DT antibodies that can inactivate DT and thus abrogate its effect in the DEREG mouse. Additionally, we showed that anti-DT mouse serum partially neutralized DT-induced Foxp3 inhibition.


Assuntos
Anticorpos Neutralizantes/imunologia , Toxina Diftérica/administração & dosagem , Toxina Diftérica/imunologia , Depleção Linfocítica , Linfócitos T Reguladores/imunologia , Animais , Anticorpos Neutralizantes/biossíntese , Autoantígenos , Fatores de Transcrição Forkhead/genética , Tolerância Imunológica , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Vet Parasitol ; 213(3-4): 103-9, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26260407

RESUMO

Epidemiological studies have demonstrated that the majority of human individuals exposed to infection with Echinococcus spp. eggs exhibit resistance to disease as shown by either seroconversion to parasite--specific antigens, and/or the presence of 'dying out' or 'aborted' metacestodes, not including hereby those individuals who putatively got infected but did not seroconvert and who subsequently allowed no development of the pathogen. For those individuals where infection leads to disease, the developing parasite is partially controlled by host immunity. In infected humans, the type of immune response developed by the host accounts for the subsequent trichotomy concerning the parasite development: (i) seroconversion proving infection, but lack of any hepatic lesion indicating the failure of the parasite to establish and further develop within the liver; or resistance as shown by the presence of fully calcified lesions; (ii) controlled susceptibility as found in the "conventional" alveolar echinococcosis (AE) patients who experience clinical signs and symptoms approximately 5-15 years after infection, and (iii) uncontrolled hyperproliferation of the metacestode due to an impaired immune response (AIDS or other immunodeficiencies). Immunomodulation of host immunity toward anergy seems to be triggered by parasite metabolites. Beside immunomodulating IL-10, TGFß-driven regulatory T cells have been shown to play a crucial role in the parasite-modulated progressive course of AE. A novel CD4+CD25+ Treg effector molecule FGL2 recently yielded new insight into the tolerance process in Echinococcus multilocularis infection.


Assuntos
Suscetibilidade a Doenças/imunologia , Equinococose Hepática/imunologia , Echinococcus multilocularis/imunologia , Animais , Equinococose , Humanos , Imunomodulação
14.
PLoS Negl Trop Dis ; 9(6): e0003795, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26053794

RESUMO

Alveolar echinococcosis (AE) is caused by infection with the larval stage of the tapeworm Echinococcus multilocularis. An increasing understanding of immunological events that account for the metacestode survival in human and murine AE infection prompted us to undertake explorative experiments tackling the potential of novel preventive and/or immunotherapeutic measures. In this study, the immunoprotective and immunotherapeutic ability of recombinant EmP29 antigen (rEmP29) was assessed in mice that were intraperitoneally infected with E. multilocularis metacestodes. For vaccination, three intraperitoneal injections with 20µg rEmP29 emulsified in saponin adjuvants were applied over 6 weeks. 2 weeks after the last boost, mice were infected, and at 90 days post-infection, rEmP29-vaccinated mice exhibited a median parasite weight that was reduced by 75% and 59% when compared to NaCl- or saponin-treated control mice, respectively. For immunotherapeutical application, the rEmP29 (20µg) vaccine was administered to experimentally infected mice, starting at 1 month post-infection, three times with 2 weeks intervals. Mice undergoing rEmP29 immunotherapy exhibited a median parasite load that was reduced by 53% and 49% when compared to NaCl- and saponin-treated control mice, respectively. Upon analysis of spleen cells, both, vaccination and treatment with rEmP29, resulted in low ratios of Th2/Th1 (IL-4/IFN-γ) cytokine mRNA and low levels of mRNA coding for IL-10 and IL-2. These results suggest that reduction of the immunosuppressive environment takes place in vaccinated as well as immunotreated mice, and a shift towards a Th1 type of immune response may be responsible for the observed increased restriction of parasite growth. The present study provides the first evidence that active immunotherapy may present a sustainable route for the control of AE.


Assuntos
Antígenos de Helmintos/farmacologia , Equinococose Hepática/prevenção & controle , Echinococcus multilocularis/imunologia , Imunoterapia/métodos , Vacinas Sintéticas/farmacologia , Análise de Variância , Animais , Antígenos de Helmintos/imunologia , Citocinas/metabolismo , Primers do DNA/genética , Equinococose , Equinococose Hepática/imunologia , Ensaio de Imunoadsorção Enzimática , Camundongos , Carga Parasitária , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Baço/metabolismo , Células Th1/imunologia
15.
PLoS Negl Trop Dis ; 9(5): e0003755, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25955764

RESUMO

BACKGROUND: The growth potential of the tumor-like Echinococcus multilocularis metacestode (causing alveolar echinococcosis, AE) is directly linked to the nature/function of the periparasitic host immune-mediated processes. We previously showed that Fibrinogen-like-protein 2 (FGL2), a novel CD4+CD25+ Treg effector molecule, was over-expressed in the liver of mice experimentally infected with E. multilocularis. However, little is known about its contribution to the control of this chronic helminth infection. METHODS/FINDINGS: Key parameters for infection outcome in E. multilocularis-infected fgl2-/- (AE-fgl2-/-) and wild type (AE-WT) mice at 1 and 4 month(s) post-infection were (i) parasite load (i. e. wet weight of parasitic metacestode tissue), and (ii) parasite cell proliferation as assessed by determining E. multilocularis 14-3-3 gene expression levels. Serum FGL2 levels were measured by ELISA. Spleen cells cultured with ConA for 48h or with E. multilocularis Vesicle Fluid (VF) for 96h were analyzed ex-vivo and in-vitro. In addition, spleen cells from non-infected WT mice were cultured with rFGL2/anti-FGL2 or rIL-17A/anti-IL-17A for further functional studies. For Treg-immune-suppression-assays, purified CD4+CD25+ Treg suspensions were incubated with CD4+ effector T cells in the presence of ConA and irradiated spleen cells as APCs. Flow cytometry and qRT-PCR were used to assess Treg, Th17-, Th1-, Th2-type immune responses and maturation of dendritic cells. We showed that AE-fgl2-/- mice exhibited (as compared to AE-WT-animals) (a) a significantly lower parasite load with reduced proliferation activity, (b) an increased T cell proliferative response to ConA, (c) reduced Treg numbers and function, and (d) a persistent capacity of Th1 polarization and DC maturation. CONCLUSIONS: FGL2 appears as one of the key players in immune regulatory processes favoring metacestode survival by promoting Treg cell activity and IL-17A production that contributes to FGL2-regulation. Prospectively, targeting FGL2 could be an option to develop an immunotherapy against AE and other chronic parasitic diseases.


Assuntos
Equinococose Hepática/imunologia , Echinococcus multilocularis/imunologia , Fibrinogênio/imunologia , Interleucina-17/biossíntese , Linfócitos T Reguladores/imunologia , Animais , Antígenos CD4 , Concanavalina A/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Equinococose , Equinococose Hepática/parasitologia , Fibrinogênio/genética , Citometria de Fluxo , Camundongos , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia
16.
Parasite ; 21: 70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25526545

RESUMO

The search for novel therapeutic options to cure alveolar echinococcosis (AE), due to the metacestode of Echinococcus multilocularis, is ongoing, and these developments could also have a profound impact on the treatment of cystic echinococcosis (CE), caused by the closely related Echinococcus granulosus s.l. Several options are being explored. A viable strategy for the identification of novel chemotherapeutically valuable compounds includes whole-organism drug screening, employing large-scale in vitro metacestode cultures and, upon identification of promising compounds, verification of drug efficacy in small laboratory animals. Clearly, the current focus is targeted towards broad-spectrum anti-parasitic or anti-cancer drugs and compound classes that are already marketed, or that are in development for other applications. The availability of comprehensive Echinococcus genome information and gene expression data, as well as significant progress on the molecular level, has now opened the door for a more targeted drug discovery approach, which allows exploitation of defined pathways and enzymes that are essential for the parasite. In addition, current in vitro and in vivo models that are used to assess drug efficacy should be optimized and complemented by methods that give more detailed information on the host-parasite interactions that occur during drug treatments. The key to success is to identify, target and exploit those parasite molecules that orchestrate activities essential to parasite survival.


Assuntos
Albendazol/uso terapêutico , Anti-Helmínticos/uso terapêutico , Equinococose/tratamento farmacológico , Mebendazol/uso terapêutico , Animais , Anti-Helmínticos/classificação , Anti-Helmínticos/farmacologia , Divisão Celular/efeitos dos fármacos , Claritromicina/farmacologia , Claritromicina/uso terapêutico , Citostáticos/farmacologia , Citostáticos/uso terapêutico , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Equinococose Hepática/tratamento farmacológico , Equinococose Hepática/parasitologia , Echinococcus multilocularis/efeitos dos fármacos , Echinococcus multilocularis/crescimento & desenvolvimento , Echinococcus multilocularis/fisiologia , Echinococcus multilocularis/ultraestrutura , Previsões , Guanidinas/uso terapêutico , Proteínas de Helminto/antagonistas & inibidores , Interações Hospedeiro-Parasita/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Larva/efeitos dos fármacos , Mefloquina/uso terapêutico , Camundongos , Terapia de Alvo Molecular , Nitrocompostos , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Tiofenos/uso terapêutico
17.
PLoS Negl Trop Dis ; 8(12): e3352, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25474446

RESUMO

A library of 426 FDA-approved drugs was screened for in vitro activity against E. multilocularis metacestodes employing the phosphoglucose isomerase (PGI) assay. Initial screening at 20 µM revealed that 7 drugs induced considerable metacestode damage, and further dose-response studies revealed that bortezomib (BTZ), a proteasome inhibitor developed for the chemotherapy of myeloma, displayed high anti-metacestodal activity with an EC50 of 0.6 µM. BTZ treatment of E. multilocularis metacestodes led to an accumulation of ubiquinated proteins and unequivocally parasite death. In-gel zymography assays using E. multilocularis extracts demonstrated BTZ-mediated inhibition of protease activity in a band of approximately 23 kDa, the same size at which the proteasome subunit beta 5 of E. multilocularis could be detected by Western blot. Balb/c mice experimentally infected with E. multilocularis metacestodes were used to assess BTZ treatment, starting at 6 weeks post-infection by intraperitoneal injection of BTZ. This treatment led to reduced parasite weight, but to a degree that was not statistically significant, and it induced adverse effects such as diarrhea and neurological symptoms. In conclusion, the proteasome was identified as a drug target in E. multilocularis metacestodes that can be efficiently inhibited by BTZ in vitro. However, translation of these findings into in vivo efficacy requires further adjustments of treatment regimens using BTZ, or possibly other proteasome inhibitors.


Assuntos
Anticestoides/farmacologia , Bortezomib/farmacologia , Echinococcus multilocularis/efeitos dos fármacos , Echinococcus multilocularis/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C
18.
PLoS Negl Trop Dis ; 8(6): e2860, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24922050

RESUMO

Two recombinant Fasciola hepatica antigens, saposin-like protein-2 (recSAP2) and cathepsin L-1 (recCL1), were assessed individually and in combination in enzyme-linked immunosorbent assays (ELISA) for the specific serodiagnosis of human fasciolosis in areas of low endemicity as encountered in Central Europe. Antibody detection was conducted using ProteinA/ProteinG (PAG) conjugated to alkaline phosphatase. Test characteristics as well as agreement with results from an ELISA using excretory-secretory products (FhES) from adult stage liver flukes was assessed by receiver operator characteristic (ROC) analysis, specificity, sensitivity, Youdens J and overall accuracy. Cross-reactivity was assessed using three different groups of serum samples from healthy individuals (n=20), patients with other parasitic infections (n=87) and patients with malignancies (n=121). The best combined diagnostic results for recombinant antigens were obtained using the recSAP2-ELISA (87% sensitivity, 99% specificity and 97% overall accuracy) employing the threshold (cut-off) to discriminate between positive and negative reactions that maximized Youdens J. The findings showed that recSAP2-ELISA can be used for the routine serodiagnosis of chronic fasciolosis in clinical laboratories; the use of the PAG-conjugate offers the opportunity to employ, for example, rabbit hyperimmune serum for the standardization of positive controls.


Assuntos
Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos , Fasciola hepatica/imunologia , Fasciolíase/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Europa (Continente) , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes , Sensibilidade e Especificidade , Testes Sorológicos/métodos , Adulto Jovem
19.
PLoS One ; 9(5): e98357, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24851904

RESUMO

The protein P29 is a potential serological marker for post-treatment monitoring of cystic echinococcosis (CE) especially in young patients. We now have demonstrated that P29 is encoded in the Echinococcus genus by a single gene consisting of 7 exons spanning 1.2 kb of DNA. Variability of the p29 gene at inter- and intra-species level was assessed with 50 cDNA and 280 genomic DNA clones isolated from different E. granulosus s.l. isolates (E. granulosus sensu stricto (G1), E. equinus (G4), E. ortleppi (G5), E. canadensis (G6), E. canadensis (G7) and E. canadensis (G10)) as well as four E. multilocularis isolates. Scarce interspecies polymorphism at the p29 locus was observed and affected predominantly E. granulosus s.s. (G1), where we identified two alleles (A1 and A2) coding for identical P29 proteins and yielding in three genotypes (A1/A1, A2/A2 and A1/A2). Genotypic frequencies expected under Hardy-Weinberg equilibrium revealed a high rate of heterozygosity (47%) that strongly supports the hypothesis that E. granulosus s.s. (G1) is predominantly outbreeding. Comparative sequence analyses of the complete p29 gene showed that phylogenetic relationships within the genus Echinococcus were in agreement with those of previous nuclear gene studies. At the protein level, the deduced P29 amino acid (AA) sequences exhibited a high level of conservation, ranging from 97.9% AA sequence identity among the whole E. granulosus s.l. group to 99.58% identity among E. multilocularis isolates. We showed that P29 proteins of these two species differ by three AA substitutions without implication for antigenicity. In Western-blot analyses, serum antibodies from a human CE patient infected with E. canadensis (G6) strongly reacted with recombinant P29 from E. granulosus s.s. (G1) (recEg(G1)P29). In the same line, human anti-Eg(G1)P29 antibodies bound to recEcnd(G6)P29. Thus, minor AA sequence variations appear not to impair the prognostic serological use of P29.


Assuntos
Antígenos de Helmintos/química , Equinococose/cirurgia , Echinococcus granulosus/isolamento & purificação , Animais , Antígenos de Helmintos/sangue , Sequência de Bases , Western Blotting , Primers do DNA , Equinococose/imunologia , Equinococose/parasitologia , Echinococcus granulosus/imunologia , Seguimentos , Humanos , Período Pós-Operatório
20.
BMC Biol ; 12: 5, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24468049

RESUMO

BACKGROUND: The metacestode of the tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a lethal zoonosis. Infections are initiated through establishment of parasite larvae within the intermediate host's liver, where high concentrations of insulin are present, followed by tumour-like growth of the metacestode in host organs. The molecular mechanisms determining the organ tropism of E. multilocularis or the influences of host hormones on parasite proliferation are poorly understood. RESULTS: Using in vitro cultivation systems for parasite larvae we show that physiological concentrations (10 nM) of human insulin significantly stimulate the formation of metacestode larvae from parasite stem cells and promote asexual growth of the metacestode. Addition of human insulin to parasite larvae led to increased glucose uptake and enhanced phosphorylation of Echinococcus insulin signalling components, including an insulin receptor-like kinase, EmIR1, for which we demonstrate predominant expression in the parasite's glycogen storage cells. We also characterized a second insulin receptor family member, EmIR2, and demonstrated interaction of its ligand binding domain with human insulin in the yeast two-hybrid system. Addition of an insulin receptor inhibitor resulted in metacestode killing, prevented metacestode development from parasite stem cells, and impaired the activation of insulin signalling pathways through host insulin. CONCLUSIONS: Our data indicate that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signalling pathway. Hormonal host-parasite cross-communication, facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of alveolar echinococcosis. This contributes to a closer understanding of organ tropism and parasite persistence in larval cestode infections. Furthermore, our data show that Echinococcus insulin signalling pathways are promising targets for the development of novel drugs.


Assuntos
Echinococcus multilocularis/crescimento & desenvolvimento , Echinococcus multilocularis/metabolismo , Insulina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Echinococcus multilocularis/efeitos dos fármacos , Echinococcus multilocularis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Proteínas de Helminto/química , Proteínas de Helminto/metabolismo , Humanos , Imuno-Histoquímica , Hibridização In Situ , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Estágios do Ciclo de Vida/efeitos dos fármacos , Dados de Sequência Molecular , Naftalenos/farmacologia , Organofosfonatos/farmacologia , Parasitos/efeitos dos fármacos , Parasitos/genética , Parasitos/crescimento & desenvolvimento , Fosforilação/efeitos dos fármacos , Estrutura Terciária de Proteína , Receptor de Insulina/química , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptor de Insulina/ultraestrutura , Homologia de Sequência de Aminoácidos , Transdução de Sinais/genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...